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Abstract

A partitioned coupling approach for time-dependent fluid–structure interactions is applied to thin shells and

membranous structures with large displacements. The frame algorithm connects a three-dimensional, finite volume-

based multi-block flow solver for incompressible fluids with a finite element code for geometrically nonlinear structural

problems using a commercial coupling interface. Thus a high modularity is achieved and the whole range of

opportunities with these two powerful codes — each of them highly adapted to its specific field of application — can be

used also for coupled simulations.

Two completely different configurations were investigated. First, the coupling algorithm was applied to an academic

test configuration consisting of one, two, and three flexible L-shaped plates being loaded by a steady far-field flow.

Various investigations were carried out at different Reynolds numbers ðRe ¼ 50; 200; and 500) in order to study

phenomena such as vortex shedding, resonance, influence of the interaction between several flexible plates, whereas the

second and third plates were placed in the wake of the first.

The second part of the paper shows that in principle the coupling procedure can also deal with real-life structures as

they occur in civil engineering. A membranous roof of glass-fiber synthetics with a complex shape was exposed to a

time-dependent wind gust from diagonally above which was superimposed on a constant basic wind flow parallel to the

ground. The structural model contains the pre-stressed textile roof including the taut cables at its circumference which

are fastened at the pylons. As a structural response, the wind gust led to a displacement of the textile roof which

disappeared again when the gust subsided. With the coupled algorithm proposed in the paper it is possible to study

dynamic interactions for engineering applications.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Interaction phenomena between fluids and structures can be found in many engineering and also medical disciplines

such as civil, mechanical and medical engineering, shipbuilding, and bio-medicine. Although the simulation tool

presented in this paper was designed for civil engineering applications, it could also be applied to other fields.

Examples of the first-mentioned field of application include, in addition to suspension bridges, tall buildings, towers,

off-shore platforms, and power lines, also lightweight membranes used as wide area roofage such as awnings, large

umbrellas, and tent roofs. These structures are becoming more and more important, because architects prefer them in

order to create unique masterpieces of design. Another crucial advantage is the efficient utilization of building material.

As an example, for the new roofage of the Gottlieb Daimler stadium in Stuttgart (Germany), it was decided in favor

of a cable–membrane structure, which has an average weight of only 13 kg=m2; whereas a cantilever roof with steel
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skeleton framing, which was also possible, reached a dead load of 70–80 kg=m2 (Bergermann et al., 1995). Accordingly,

the supporting construction for the roof and the grounding required much less material. Thus membranous roofs are

often not only the main creative element, but also a substantial part of the statics of the entire structure. One of the most

spectacular buildings of this kind is the wired textile dome in Atlanta (USA), which canopies a stadium for 70,000

spectators with a span of 240 m:
To determine the wind loads of such buildings — especially for complex geometries or time-dependent external flows

— expensive and time-consuming experiments in wind tunnels or semi-empirical methods are state-of-the-art. This work

makes a contribution to establishing numerical simulations as an advantageous tool to predict the behavior of wind-

loaded structures.

In principle, there are the following possibilities for fluid–structure interactions in buildings:

(i) The wind load on the structure causes a steady deformation state.

(ii) The fluid flow leads to a time-dependent movement of the structure, which is caused by one of the following effects:

(a) A transient wind field exists even far away from the structure (e.g., change in wind direction or in strength,

sudden gust of wind).

(b) Owing to the shape of the structure, the flow becomes time dependent in the wake of the building (e.g.,

generation of a von K!arm!an vortex street past bluff bodies impigned by a constant wind).

(c) Combination of (a) and (b).

Concerning the early fluid–structure coupling approaches and the practice in building dimensioning, in most cases only

one of the disciplines is treated with a more complex model, whereas the other uses a simplified approach. This observation

can be attributed to the circumstance that typically either fluid dynamics or structural mechanics specialists carried out these

investigations, putting special emphasis on their specific field of knowledge and strongly simplifying the rest.

One possibility for a simplified structural model is to suppose the structure to be a rigid body with linear or torsional

springs as bearing, while the flow field is described in more detail. Different levels of approximations have been used for

this purpose, starting with computations based on the potential theory for isentropic and nonrotational flow. The next

level is given by the Euler equations for inviscid fluid flows. Finally, with increasing computer power, the full Navier–

Stokes equations have been solved for viscous flows. As an example of strong simplification on the structural side, the

common section models of suspension bridges should be mentioned here (see, e.g., Frandsen, 1999).

In contrast, there are dynamic simulations of structures with a huge number of degrees of freedom, but the wind

loads are modelled by statistical and half-empirical approaches (e.g., Kovacs, 1994; Zahlten, 1998) or even roughly

estimated in the hope of meeting the worst load case.

Over the last few years, interdisciplinary formulations have been published involving both improved flow models and

flexible structures. Furthermore, many groups have carried out research developing the coupling methodology. They

provided or verified a variety of worthwhile algorithms including the simple sequential staggered coupling approach

and parallel techniques including predictor–corrector steps, fluid subcycling, and adaptive under-relaxation. Examples

are to be found in Bathe et al. (1995), Lesoinne and Farhat (1998), Le Tallec and Mouro (1998), Steindorf and Matthies

(1999), and Wall et al. (1999).

Some examples concerning case (1) in the survey above have recently been investigated by Gl .uck et al. (2001); others

can be found in Section 4.2. For higher Reynolds numbers, the same configuration leads to case (2b); Section 5 presents

an example of case (2a).

For this purpose the CFD code FASTEST-3D (Durst and Sch.afer, 1996) developed by the Institute of Fluid

Mechanics, Erlangen (Germany), and the CSD code ASE (Katz and Bellmann, 1995a) provided by SOFiSTiK AG,

Munich (Germany), have been adapted and coupled by the MpCCI interface (Ahrem et al., 2000).

The paper is organized as follows: Section 2 provides the governing equations for the fluid flow and the structural

dynamics including the boundary conditions. In Section 3 the numerical methodologies for both parts are described.

Special emphasis is also placed on the coupling approach. The application of the method to an academic test case is

analyzed and discussed in Section 4. Finally, the application to a coupled problem from civil engineering is investigated

in Section 5.

2. Governing equations and boundary conditions

2.1. Fluid dynamics

Viscous fluid flow is governed by the Navier–Stokes equations expressing the conservation of mass (Eq. (1)) and

momentum (Eq. (2)). For an incompressible fluid with constant properties as assumed in this study, the transport
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equations read as follows:

@Ui

@xi

¼ 0; ð1Þ
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@Uj
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; ð2Þ

where Uj is the velocity component in the j direction, xi the cartesian coordinate in the i direction, P the pressure, r the

density, and m the dynamic viscosity of the fluid.

For the boundary conditions of a fluid domain the following distinction is drawn.

(i) Inlet: Velocity profiles UjðxiÞ are usually given for the inflow.

(ii) Outlet: As the values of the flow variables are not a priori known at an outlet, a zero gradient for the velocity

components is presumed normal to the outflow:

@Uj

@xi

ni ¼ 0; ð3Þ

which is a sufficient approximation if the outflow boundary is far enough from the main region of interest.

(iii) Wall: The no-slip boundary condition is valid at walls. For resting walls the flow velocity is zero at the wall:

Uj ¼ 0; ð4Þ

and for moving walls the fluid adopts the wall velocity:

Uj ¼ Uw; j : ð5Þ

(iv) Symmetry: If the flow problem is symmetric, the fluid domain for the calculations can be reduced, whereas the

definition states that no fluid flows through symmetry boundary planes. Hence the velocity component normal to this

plane is zero:

Ui ni ¼ 0: ð6Þ

2.2. Structural dynamics

The characteristics of thin-walled structures such as shells or membranes can be described by reduced models

specifying state variables acting in the middle plane of the structure. Starting from equilibrium conditions, the

constitutive relations and the material equations for the dynamic nonlinear response of the structure can be summarized

by the equations of motion:

M.uðtÞ þ C’uðtÞ þ KðuðtÞÞuðtÞ ¼ FðtÞ; ð7Þ

where M is the mass matrix, C the damping matrix representing the inner or structural damping, and KðuðtÞÞ the

stiffness matrix depending on the displacements uðtÞ in a nonlinear way. FðtÞ characterizes the load acting on the

structure caused by the fluid (pressure and shear stress). ’uðtÞ and .uðtÞ describe the velocity and the acceleration. It should

be noted that any fluid damping is included on the right-hand side of Eq. (7) and not in the damping matrix C:
Boundary conditions are defined on each part of the boundary and consist of two types.

(i) Displacement boundary conditions:

u ¼ %u: ð8Þ

(ii) Traction boundary conditions:

T ¼ %T; ð9Þ

where %u and %T are specified quantities for the displacement and the traction. Additionally, initial conditions have to be

defined for the position and the velocity of the structure at some initial time t0:

3. Numerical approaches

3.1. Fluid dynamics

For the solution of the Navier–Stokes equations based on a finite volume approach as used in the present work, it is

advantageous to write the governing equations in integral form. For moving grids the integration of Eqs. (1) and (2) is
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carried out for a control volume (CV) whose boundaries move with time. Applying the Leibniz rule and Gauss theorem,

the general transport equation of the quantity F in a finite volume notation reads as follows:

d

dt

Z
V

rF dV þ
Z

S

rðUi � Ug;iÞF� GF
@F
@xi

� �
dSi ¼

Z
V

sF dV : ð10Þ

For an incompressible fluid with constant properties, this equation is solved for both the continuity equation and the

momentum equations; the corresponding values for the diffusion coefficient GF and the source term sF can be found in

Table 1.

In the case of time-dependent moving meshes, the transport velocity is composed of the Eulerian or absolute fluid

velocity Ui reduced by the grid velocity Ug;i: To ensure the conservation principle, the space conservation law (SCL) has

to be fulfilled for each control volume (CV):

d

dt

Z
V

dV �
Z

S

Ug;i dSi ¼ 0: ð11Þ

According to Demirdmi!c and Peri!c (1990), the direct calculation of the grid velocities can be avoided by replacing

them with the mass fluxes through the CV faces (‘mesh fluxes’) which result from the motion of the CV faces during the

time step. The convective term in Eq. (10) containing the grid velocity can be discretized for a hexahedral CV as follows:Z
S

rF Ug;i dSiE
X

c

rcFc

dVc

Dt
; c ¼ fw; e; s; n; b; tg; ð12Þ

where c stands for the six faces of the CV.

This means that the solution of each transport equation is based on the relative fluxes, which are the differences

between the fluxes through a CV face caused by fluid motion reduced by the ‘mesh fluxes’. Based on this formulation,

the grid velocities Ug;i are no longer required for the internal flow region but they have to be known explicitly at moving

impermeable walls. This approach is the so-called ‘arbitrary Lagrangian Eulerian (ALE)’ formulation (Demirdmi!c and

Peri!c, 1990). Furthermore, the time-dependent term on the left-hand side of Eq. (10) has to be treated in a special way

according to first- or second-order accuracy in the case of moving grids. Especially it has to be taken into account that

not only the transported quantity F but also the cell volume DV is time dependent.

As mentioned above the CFD calculations were performed with FASTEST-3D. This is an incompressible, unsteady,

three-dimensional finite volume code. The code is based on nonstaggered, block-structured grids and has been adapted

to moving meshes. The terms for changing cell volumes, flux corrections, and wall velocities are discretized by a fully

implicit scheme of second-order accuracy in time, consistent with the other time-dependent terms.

Concerning the spatial discretization, an upwind scheme (UDS) or a central-difference scheme (CDS) can optionally

be used or combined based on a deferred correction approach. In the present study CDS was applied for all calculations

in Section 4. For the complex geometry of the practical example in Section 5, only UDS provided converged solutions.

The ALE extension of FASTEST-3D was verified at several test cases. One example concerns the flow in a channel

with a moving obstacle, which was investigated experimentally by Pedley and Stephanoff (1985) and calculated by

Ralph and Pedley (1988), Demirdmi!c and Peri!c (1990), and others. The results coincide very well with the measurements

and the other numerically predicted data.

3.2. Structural dynamics

The solution of the structural problem is based on the finite element method. The structure is discretized by a mesh of

quadrilateral elements. With respect to the mechanical model, dimensionally reduced element formulations for

membranes or shells are used based on a classical isoparametric formulation or a nonconforming formulation (see, e.g.,

Bathe, 1982; Zienkiewicz and Taylor, 1991). As mentioned before, the structural simulations were performed using the

commercial program ASE, which incorporates special extensions adapted to the requirements in civil engineering (Katz

and Bellmann, 1995a).

Table 1

Terms of the general transport Eq. (10)

Equation F GF sF

Mass conservation 1 0 0

Momentum conservation Uj m �@P
@xj
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The time-dependent problem is solved by applying a Newmark–Wilson approach (Katz and Bellmann, 1995b).

Assuming a linear acceleration within a time step, this implicit scheme is unconditionally stable and second-order

accurate in time for linear and first-order accurate for geometrically nonlinear problems (Zienkiewicz and Taylor, 1991).

In addition to geometrical nonlinear effects such as large displacements in connection with small deformations,

nonlinear material properties can be taken into account. For solving the system of nonlinear equations a modified

Newton–Raphson scheme is used within each time step of the dynamic simulation.

3.3. Fluid–structure coupling

3.3.1. Geometric modeling and grid definition

In the design process for civil engineering constructions, the geometric model of the structure plays an important role.

Therefore, it is also the central point in the software system architecture shown in Fig. 1. All geometric information is

derived directly from given CAD data and stored in a database describing a b-rep (boundary representation) model

(Bungartz et al., 1996; Corney, 1997) completed by information concerning material properties and boundary

conditions.

For membrane structures it is also possible to start from an initial geometry and to determine the surface geometry

under dead load in a so-called ‘form finding process’ according to Bellmann (1998).

In a next step the surface of the structure is discretized by an unstructured quadrilateral mesh (see, e.g., Fig. 2)

generated by an automatic mesh generator (Rank et al., 2000). The input data for the CFD grid generator ICEM-CFD,

used to create a three-dimensional block-structured hexahedral grid, is also derived directly from the geometric model.

Fig. 2 shows an example of the corresponding CFD surface grid of the tent roof, described in detail in Section 5. The

CFD code treats the structure as an infinitely thin obstacle, whereas the real thickness is taken into account for the

structural simulation.

3.3.2. Coupling algorithm

Both the CSD code ASE and the CFD code FASTEST-3D are highly adapted to their specific field of application,

providing many special features. To preserve these advantages and to realize an effective coupling algorithm, a

partitioned solution approach was chosen. Similar partitioned algorithms were used by other authors, e.g. Bungartz

et al. (1998), Cebral (1996), Steindorf and Matthies (1999), and Wall et al. (2000). The simulation is based on an

iterative frame algorithm, integrating both codes developed completely independently from each other in an implicit

time-stepping procedure (see Figs. 1 and 3).

Each simulation code runs on its own processor(s) after being generated by a main process. The interprocess

communication is supported by the MPI Library (MPI, 2001). Caused by the large difference in the number of grid

Fig. 1. Scheme of the software system architecture for the fluid–structure coupling.
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points (e.g. 106 control volumes for CFD and 103 finite elements for CSD), the computational effort for the CFD part is

much higher than that for the CSD part. However, the high vectorization and parallelization rate of FASTEST-3D

allows efficient computations on parallel or vector-parallel machines and the use of multiple processors based on the

domain decomposition approach.

All computations were carried out on the symmetric multi-processing (SMP) cluster Hitachi SR8000-F1 at LRZ in

Munich (Germany) applying up to seven of a total of 112 nodes. Each node consists of eight superscalar RISC

processors (1.5 GFlops peak performance) having pseudo-vector properties. These improve the memory bandwidth,

alleviating the main deficit of RISC-based high-performance computing (Brehm et al., 2001). The architecture of the

HITACHI SR8000-F1 allows the use of three different levels of parallelization: (i) pseudo-vector processing, (ii) intra-

node auto-parallelization over all processors of one SMP node (via COMPAS), (iii) inter-node parallelization using

several SMP nodes and a communication library for the data exchange between the nodes such as MPI. All three levels

are taken into account to achieve a high performance of the CFD code.

The bilateral data exchange between CSD and CFD is managed using the MpCCI coupling interface (Ahrem et al.,

2000). The exchange of element- and node-based variables between two nonmatching grids (FE vs. FV) is supported by

a neutral geometric model. Although both grids approximate the same surface, their nodes do not coincide. Therefore,

some mutual interpolation is necessary.

Fig. 2. CSD mesh of the tent roof with evaluation points (left) and CFD mesh layer adjacent to the tent roof (right). Both are projected

into the x–y plane.

Solver

Solver

Estimation
of structure

time step

outer FSI iteration

inner iteration

converged final solution

Fluid solution

Structural solution

displacements

StructureFluid

shear stress
pressure

Fig. 3. Detailed overview of the partitioned coupling algorithm.
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For the transfer of pressure forces and shear forces from CFD to CSD, a conservative interpolation according to

Farhat et al. (1998) is used, ensuring that the load resultants on both grids are exactly the same. The disadvantage of

this method is that in case of a coarse source grid and very fine target grid, the loads are distributed in a nonphysical

way. However, usually the CFD mesh is finer than the CSD grid anyway.

The calculated displacement vectors of the CSD nodes are transferred to the CFD nodes by using a bilinear

interpolation in order to be consistent with the bilinear ansatz functions used for the finite element calculation of the

structural displacements in the CSD code. A conservative interpolation as used to transfer pressure forces and shear

forces is not suitable here, because the displacements are not integral quantities.

The coupling algorithm controlling the time-stepping procedure in the iterative solution process based on D .utsch

et al. (1999) is shown in Fig. 3. The outer loop describes the temporal discretization of the problem. Within

each time step, outer iterations between the CFD and CSD simulation are performed until global convergence is

reached, i.e. the coupling scheme is fully implicit. Thereby, the threshold for the residual structural displacements

is usually 10�4–10�3 times the maximum amplitude of oscillation in the case of dynamic fluid–structure inter-

actions. The load for the CSD simulation is computed from the pressure and shear stresses as a result of

the CFD computation and the boundary geometry is modified by the structural displacements computed by the

CSD simulation. Significant structural deformations can be taken into account by an under-relaxation of the

boundary geometry. To reduce the number of outer iterations within each time step of the dynamic coupling

procedure, this strategy is extended by a predictor–corrector scheme. At the beginning of each time step, the

boundary geometry is estimated from the results of previous time steps, and the geometries of the last three time steps

are taken into account in order to estimate the geometry for the new time step with second-order accuracy in

time. Based on this geometry, a CFD simulation is carried out followed by a CSD computation which corrects the

predicted interface geometry used in the next fluid–structure interaction (FSI) iteration as shown in Fig. 3. Using

the above-mentioned geometry estimation, the number of CFD iterations could be reduced by up to 45% (Gl .uck

et al., 2001).

3.3.3. Adaptation of the CFD grid

During each outer fluid–structure iteration, the finite volume grid of the fluid domain has to be adapted to the new

position of the boundaries. This is done in special routines using algebraic methods (linear distortion in the inner region

of a grid block as standard method, transfinite interpolation or use of special problem-adapted higher-order

polynomials to generate the block faces in the vicinity of the distorted structure).

An example of a distorted mesh around a flexible vertical plate applying the last-mentioned method is given in Fig. 4.

A transfinite interpolation (Thompson et al., 1985) was used for the test case in Section 4 in order create the block face

including the distorted edges DE and EF depicted in Fig. 5.

4. Application to test case: L-shaped plates

The first test case is an academic one in order to study phenomena such as vortex shedding in the three-dimensional

wake behind an oscillating bluff body, resonance concerning the vortex-shedding frequency and an eigenfrequency of

the structure, and the interaction between several flexible plates caused by the surrounding fluid.

Fig. 4. 2D-cut through a 3D initial mesh (left) and distorted mesh (right) around a flexible vertical plate using a polynomial of third

order to generate the block interface upwardly adjacent to the plate and linear distortion of the inner grid points inside the blocks.
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4.1. Description of the configuration

Fig. 5 illustrates the arrangement of several flexible, L-shaped plates, each of them clamped at their shortest edge FA:
The extensions of the flow domain were Lx ¼ 40 m; Ly ¼ 11 m; and Lz ¼ 6 m: Three laminar flow configurations

defined by the Reynolds number referred to the length L and the relevant free-stream velocity UN were taken into

account (see Table 2), each of them representing one characteristic regime: laminar steady wake ðRe ¼ 50Þ; unsteady

periodic wake ðRe ¼ 200Þ; and aperiodic wake ðRe ¼ 500Þ: All simulations were carried out without any turbulence

model, because even for the highest of these Reynolds numbers transition will not occur in the near vicinity of the

plates, but only in the remote wake.

For Re ¼ 200 the far-field velocity was varied, leading to completely different structural responses, because it is not

only the Reynolds number that is a characteristic parameter to describe the coupled problem. As a measure of the

resistance of the structure against the fluid load, the ratio of the modulus of elasticity E and the stagnation pressure

ðrU2
N
=2Þ is also given in Table 2. For Re ¼ 500 the mutual influence of several plates was examined.

Until a time of t ¼ 20 s after the beginning of the FSI simulation, the plates were fixed and rigid, i.e., only the flow

was calculated. After that moment the plates became flexible, so that they were able to oscillate freely in the flow. Only

the clamp support at FA was still maintained. The free-stream velocity UN was constant during each of these

simulations. The geometric data and structural properties of one L-plate are given in Table 3.

The time-step size for the coupled simulations was Dt ¼ 0:025 s in order to resolve one oscillation period with the first

eigenfrequency of the plate by at least 30 time steps, which was found to be sufficient. The only exception is the test case

with Re ¼ 200 and UN ¼ 14:07 m=s; where a time-step size Dt ¼ 0:01 s was used in order to resolve the oscillations

with the second eigenfrequency.

Figs. 6 and 7 show the CFD surface grids used and also the different CSD grids, whereas all simulations described in

Table 2 are based on the finest mesh CFD 3 in connection with the structured mesh CSD 1. Detailed information
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Fig. 5. Arrangement of the L-shaped plates test case and positions of chosen points on the plate for pressure analysis.

Table 2

Simulated test cases concerning L-shaped plates

No. of L-plates Re UN E=ð1
2
r U2

N
Þ Dt Wake pattern Remark

(m/s) (s)

1 50 10 7:00 � 107 0.025 Stationary

1 10 7:00 � 107 0.025 Periodic

1 200 5.48 23:31 � 107 0.025 ) 2 individual frequencies f1 ¼ fe;1 ¼ 1:19 Hz

1 14.07 3:54 � 107 0.01 f1 ¼ fe;2 ¼ 3:15 Hz

1 10 7:00 � 107 0.025 Quasi-periodic

2 10 7:00 � 107 0.025 ) Wider range of frequencies

3 500 10 7:00 � 107 0.025

3 16 2:73 � 107 0.025
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Table 3

Characteristics of one L-shaped plate

Length L ¼ 1 m

Thickness d ¼ 10 mm

Material Polyester

Modulus of elasticity E ¼ 3500 MN=m2

Shear modulus G ¼ 1326 MN=m2

Poisson’s ratio n ¼ 0:32

Density r ¼ 1200 kg=m3

Eigenfrequenciesa fe;1 ¼ 1:19 Hz

fe;2 ¼ 3:15 Hz

fe;3 ¼ 10:11 Hz

fe;4 ¼ 18:78 Hz

?

aCalculated with the CSD code ASE using Lanczos’ method (Bathe, 1982).

Fig. 6. CFD surface grids for the L-shaped plates.

Fig. 7. CSD grids for the L-shaped plates.
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concerning the CFD volume grids is given in Table 4. All CFD grids are nonequidistant, and have a higher resolution

near the bottom wall and the L-plates. The influence of the grid resolutions of the CFD and the CSD domain will be

discussed separately in Section 4.2.1.

Furthermore, the behavior of the (implicit) coupling algorithm with FSI iterations within each time step (see

Section 3.3.2) was studied in comparison with an (explicit) frame algorithm without any FSI iterations. For the latter,

two different time-step sizes were used.

The coupled simulations were carried out on seven nodes of the Hitachi SR8000-F1 (six nodes for CFD, one node for

CSD).

4.2. Results

4.2.1. Laminar steady flow ðRe ¼ 50Þ
Fig. 8 represents the displacement of the outer vertex C of the plate over time. As mentioned in Section 4.1, the plate

had been fixed until t ¼ 20 s: Thereafter the constraint was released and the plate was able to perform structural

oscillations. Because of the sudden release of the plate, the displacement overshot several times the steady deformation

state, which had been reached after a few seconds. A Fourier transformation of the displacements clarified that the plate

oscillates mainly in its first eigenfrequency of fe;1 ¼ 1:19 Hz:
The reason for the standstill of the plate after a while is the stationary flow field around the plate which coincides with

the small Reynolds number chosen. The pressure curve for a point at the back side of the plate in Fig. 9 only shows

pressure oscillations due to the movement of the plate. More details (e.g., a vertical and a horizontal cutting plane

through the pressure field) can be found in Binder (2001).

Influence of the CFD grid resolution: The three grid levels CFD 1, CFD 2, and CFD 3 in Fig. 6 were applied to the

calculation of the (steady) flow field around the fixed and rigid plate ðto20 sÞ in order to study the CFD grid

dependence. Table 5 shows the results for the pressure difference between the front and back sides of the L-plate at

point II in Fig. 5. The Richardson extrapolation (Ferziger and Peri!c, 1999) based on the grid levels CFD 2 and CFD 3

and on the theoretical order of the used central difference scheme (CDS) p ¼ 2 yields the grid independent solution in

Table 5. The deviation on grid level CFD 3 of only 0.27% is highly satisfactory for practical simulations.

Influence of the CSD grid resolution: Fig. 10 represents the displacements of the vertex D for the four different CSD

meshes depicted in Fig. 7 predicted with the finest CFD 3 grid in Fig. 6. Vertex D was chosen, because at this location

the coarsest CSD 2 mesh with 56 elements yielded the largest deviation from the structured CSD 1 mesh with 160

elements. However, the deviation of the coarsest mesh is not larger than 2.6%, so that even this mesh provides

satisfactory results for practical purposes.

Explicit vs implicit frame algorithm and influence of the time-step size: As mentioned in Section 3.3.2. a fully implicit

predictor–corrector scheme was used for all simulations in the present work. The only exceptions are to be found in this

subsection, where the fully implicit scheme was compared with an explicit scheme without any subiterations within each

time step. This means that the outer FSI iterations in Fig. 3 were omitted. Furthermore, the difference between the

explicit schemes with and without a predictor step (estimation of the structure in Fig. 3) were investigated, and three

different time-step sizes were taken into account for each of these two explicit schemes.

Table 4

Data on the CFD grids for the L-shaped plate problem

No. of plates Grid No. of blocks No. of control volumes (CV)

In x; y; z direction Total On the plate

1 CFD 1 24 36 � 24 � 16 13,824 40

1 CFD 2 24 72 � 48 � 32 110,592 160

1 CFD 3 24 144 � 96 � 64 884,736 640

2 CFD 3 36 168 � 96 � 64 1,032,192 640

3 CFD 3 48 184 � 96 � 64 1,130,496 640
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The results of the mentioned simulations are depicted in Figs. 11–16. The output of the implicit-coupled calculations

with a small time-step of Dt ¼ 0:025 s (see Fig. 8) is given as reference solution.

Concerning the explicit scheme without prediction of the structural shape at the beginning of a new time step, the

following resulted: the amplitudes of the damped oscillations were much too high for all time-step sizes, but this

phenomenon extenuated slightly with decreasing time-step size, which is typical for an explicit scheme. On the other

hand, instabilities in the displacement curve occured the earlier, the smaller was the time-step size (see Figs. 11–13). This
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Fig. 8. Time history of the displacement of vertex C at Re ¼ 50:
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Fig. 9. Time history of the pressure at point V on the back side of the plate at Re ¼ 50: (In all figures showing pressure signals the

pressure is given relative to the reference pressure at the inlet to the flow field leading to partially negative values.)

Table 5

Pressure difference between the front and back sides of the L-shaped plate at point II in Fig. 5 for Re ¼ 50 obtained on different grid

levels (grid independent solution estimated by Richardson extrapolation)

Grid level DPII Deviation from

(Pa) grid independent solution (%)

CFD 1 53.73 �3:15

CFD 2 54.87 �1:10

CFD 3 55.33 �0:27

Grid independent solution 55.48 —
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observation agrees with the results of Wall (1999), who described the increasing danger of instability with decreasing

time-step size for explicit coupling procedures.

In contrast to the explicit scheme without a predictor step, the explicit scheme with a predictor step is far more

accurate within its stable period of time. For a time-step size which was small enough to resolve the structural

oscillations ðDtp0:025 s; see Figs. 15 and 16), the displacement curves can hardly be distinguished from the reference

solution. On the other hand, the explicit scheme without a predictor step is stable for a much longer time span, even

though producing large deviations from the reference solution. Mok and Wall (2001) investigated a similar numerical

example. They found exactly the same conflicting phenomena as mentioned above. In their nomenclature the explicit

scheme without a predictor step is denoted ‘basic sequential staggered’, the explicit scheme with a predictor step

‘sequential staggered with predictor’, and the implicit (reference) scheme as ‘iterative staggered’. Mok and Wall (2001)

drew the same conclusion as in the present study, that only the implicit coupling scheme is appropriate to produce

stable and accurate solutions. Le Tallec and Mouro (1998) also pointed out that it is difficult to stabilize explicit

coupling schemes.

Concerning the explicit scheme with a predictor step another issue should be mentioned: in contrast to the scheme

without a predictor step the solution became unstable in both cases, for decreasing and increasing time-step size starting

from Dt ¼ 0:025 s; which can be seen in Figs. 14–17.

4.2.2. Unsteady periodic flow ðRe ¼ 200Þ
The influence of three different free-stream velocities on the structural response was investigated at the same

Reynolds number Re ¼ 200:
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Fig. 10. Comparison of the displacements at vertex D obtained by the different CSD meshes in Fig. 7 at Re ¼ 50 (right: zoom of left

diagram).
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Fig. 11. Time history of the displacement of vertex C at Re ¼ 50 (explicit scheme without predictor step with Dt ¼ 0:05 s in comparison

with the implicit reference solution).
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Arbitrarily chosen free-stream velocity ðUN ¼ 10 m=sÞ: Corresponding to Section 4.2.1, first the arbitrarily chosen

velocity UN ¼ 10 m=s was considered. Although the vortex shedding in the wake has a complex three-dimensional

structure (see, e.g., Fig. 18), there are some phenomena which should be examined more closely. The pressure histories

for the five points in Fig. 5 on the back side of the (still fixed and rigid) plate are shown in Fig. 19. The pressure values at

points IV and V oscillate exactly in opposite phase, while the pressure at I lags only approximately p=2 behind the

pressure at III.

A Fourier transformation yields two main frequencies in each signal, f1 ¼ 2:15 Hz and f2 ¼ 4:3 Hz; where the second

one is exactly twice the first (see Figs. 21 and 22 and Table 6). The Strouhal numbers Sr1 based on f1 and the width L of

the plate and Sr2 based on f2 and the height 0:5L of the flag-like part of the plate are Sr1 ¼ Sr2 ¼ 0:215; which is a

typical value for vortex shedding behind bluff bodies. Both Strouhal numbers use UN as characteristic velocity, which is

legitimate, because for both Re ¼ 200 and 500 the flag-like part of the L-plate is situated outside of the boundary layer

near the ground wall.
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Fig. 13. Time history of the displacement of vertex C at Re ¼ 50 (explicit scheme without predictor step with Dt ¼ 0:0125 s in

comparison with the implicit reference solution).
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Fig. 12. Time history of the displacement of vertex C at Re ¼ 50 (explicit scheme without predictor step with Dt ¼ 0:025 s in

comparison with the implicit reference solution).
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After the plate became flexible at t ¼ 20 s; the structural response is similar to the case with Re ¼ 50: The plate

reaches a steady deformation state after some initial oscillations (see Fig. 20). In the pressure distribution for tX20 s;
three dominant frequencies are found as given in Table 6. The first one, 1.19 Hz, is due to the movement of the plate in

its first eigenfrequency. The further two are the vortex-shedding frequencies at the deformed plate. With respect to the

frequencies observed for to20 s; both values are slightly shifted to larger values. This can be explained as follows: the

blocking length scale of the flag-like part of the L-plate in the z direction is L=2 for the vertical resting plate at to20 s;
but lower than L=2 for the distorted plate at t > 20 s: The Strouhal number also changed slightly, because of the

distorted shape. Both phenomena together led to slightly shifted vortex-shedding frequencies.

Free-stream velocity adjusted to resonance at first eigenfrequency ðUN ¼ 5:48 m=s): Here UN was adjusted in such a

way that the main vortex shedding frequency was equal to the first eigenfrequency of the L-shaped plate in order to

reach the resonance case (see Figs. 21 and 23 and Table 6). Fig. 20 underlines that the plate never came to a standstill;

rather, the plate was excited to bending and torsional oscillations again and again.
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Fig. 15. Time history of the displacement of vertex C at Re ¼ 50 (explicit scheme with predictor step with Dt ¼ 0:025 s in comparison

with the implicit reference solution).
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Fig. 14. Time history of the displacement of vertex C at Re ¼ 50 (explicit scheme with predictor step with Dt ¼ 0:05 s in comparison

with the implicit reference solution).

M. Gl .uck et al. / Journal of Fluids and Structures 17 (2003) 739–765752



Free-stream velocity adjusted to resonance at second eigenfrequency ðUN ¼ 14:07 m=s): In this case UN was adjusted

such that the main vortex shedding frequency, 3:13 Hz; was nearly the same as the second eigenfrequency, 3:15 Hz; of

the plate. Again a resonance case was found (see Figs. 21 and 24 and Table 6). For tX20 s; besides the first and second

eigenfrequencies, the two shifted vortex-shedding frequencies, 3.61 and 7:30 Hz; were found. In a zoomed version of

Fig. 20, it can be seen that the plate also did not come to standstill, but oscillated in its second eigenfrequency, even

though with a very low amplitude.

4.2.3. Aperiodic flow ðRe ¼ 500Þ
At Re ¼ 500 the number of L-plates was varied in order to study the mutual influence to the structural response.

Single plate or two plates in a row: Corresponding to Sections 4.2.1 and 4.2.2, first the loading of the plate by

UN ¼ 10 m=s was considered. The difference from the cases at the lower Reynolds numbers is that the plate did not

reach a steady deformation state even for this arbitrarily chosen velocity of 10 m=s (see Fig. 25).
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Fig. 17. Detail from Fig. 15 superimposed with Fig. 16.
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Fig. 16. Time history of the displacement of vertex C at Re ¼ 50 (explicit scheme with predictor step with Dt ¼ 0:0125 s in comparison

with the implicit reference solution).
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In the case of two plates, the first came to a standstill but the second did not (see Fig. 26), probably because the

vortices from the rear plate can shed unhinderd, in contrast to the front plate. Both cases show an aperiodic wake

structure.

Three plates in a row: In the case of three plates, the first came to standstill but the second and the third did not (see

Fig. 27). The frequency spectra of the displacements are depicted in Fig. 28, showing that the first plate is oscillating

nearly periodically in its first eigenfrequency, whereas the second and third were excited to perform oscillations also in

their second eigenfrequency. The appearance of the second eigenmode is also found in the visualization of the structural

behavior. Beyond this, the displacement signals of plates 2 and 3 show a wide range of smaller frequency peaks, i.e.,

these plates do not oscillate purely periodically. This qualitative difference in the behavior of the first plate in

comparison with the other plates was found in all calculations at Re ¼ 500 for the arrangements consisting of two or

three plates.

Concerning three plates, a higher free-stream velocity of UN ¼ 16 m=s was also taken into account. This is the

example with the largest deformations of all structures due to the high stagnation pressure loading of the plates (see

Fig. 29).

Fig. 30 represents the time history of the pressure at point V (see Fig. 5) on each plate. It becomes obvious that, in

contrast to Re ¼ 200; a wider range of frequencies can be found in the pressure signal even for to20 s representing an

aperiodic wake structure. For simpler bluff bodies such as the circular cylinder flow, this phenomenon is observed first

in the range 220pRep400 and is directly related to transition to turbulence ocurring in the wake behind the body. As

expected, the largest pressure difference between the front and back sides occurred at plate 1. In contrast to plate 1, the

t [s]

P
 [P

a]

10 10.5 11 11.5 12 12.5 13
-50

-45

-40

-35

-30

-25

I
II
III
IV
V

Fig. 19. Pressure at chosen points on the back side of the fixed and rigid plate ðto20 sÞ at Re ¼ 200 and UN ¼ 10 m=s:

XY

Z

Fig. 18. Three-dimensional shedding and deformation of vortices past the L-shaped plate at Re ¼ 200:
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pressure on the front side of plate 2 is smaller than that on the back side at all times, leading to an average displacement

of plate 2 in the opposite flow direction.

Fig. 31 depicts three snapshots of the pressure field in a vertical cutting plane through the flag-like parts of the

three L-plates. The low-pressure area between the first two plates becomes obvious and the large distortion of plate 1

t [s]

x 
[m

]

18 20 22 24 26 28 30 32 34 36 38 40
0

0.1

0.2

0.3

0.4

0.5

U = 5.48 m/s
U = 10 m/s
U = 14.07 m/s

resonance at
1st eigenfrequency

resonance at
2nd eigenfrequency

Fig. 20. Time history of the displacement of vertex C for different free-stream velocities UN at Re ¼ 200:
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Fig. 21. Frequency spectrum of the pressure at point V on the back side of the plate for different free-stream velocities UN at Re ¼ 200

for to20 s:
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Fig. 22. Time history of the pressure at point V on the back side of the plate at Re ¼ 200 and UN ¼ 10 m=s (arbitrarily chosen).
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(top right), leading to a stronger exposure of plate 2 in the flow, which can be recognized in the pressure variation in

Fig. 30 (middle).

5. Application to civil engineering: tent roof

The second test case deals with a real-life structure from the field of civil engineering in order to show that the

coupling procedure is also able to handle more complex examples of practical interest.

5.1. Description of the configuration

The membrane roof in Fig. 32 was built in front of the entrance to an office building in Dresden (Germany) in 2000.

This building acted in a slightly modified shape as a model for the present test case. Its technical data are given in Table

7. Between the pylons a thin glass-fiber membrane is tautened by circumferential cables.

The superposition of a constant basic wind flow and a time-dependent wind gust was taken into consideration to realize

an unsteady fluid–structure interaction. In a previous investigation a constant wind flow did not lead to a dynamic

response (Gl .uck et al., 2001). In this first test case for a dynamically coupled calculation of the flow around a membrane
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Fig. 24. Time history of the pressure at point V on the back side of the plate at Re ¼ 200 and UN ¼ 14:07 m=s (adjusted to resonance

at second eigenfrequency).

Table 6

Frequency peaks in the displacement of vertex C and in the pressure signal at point V on the back side of the plate before ðto20 sÞ and

after ðtX20 sÞ the plate became flexible at Re ¼ 200 (the intensities of the peaks each decrease with increasing frequency)

UN Frequencies in displacement Frequencies in pressure Frequencies in pressure

(m/s) ðtX20 sÞ ðto20 sÞ ðtX20 sÞ
(Hz) (Hz) (Hz)

5.48 1.19 1.19 2.38 1.19 2.45

10.00 1.19 2.15 4.30 1.19 2.29 4.65

14.07 1.19 3.15 3.13 6.26 1.19 3.15 3.61 7.30
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Fig. 23. Time history of the pressure at point V on the back side of the plate at Re ¼ 200 and UN ¼ 5:48 m=s (adjusted to resonance at

first eigenfrequency).
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structure, importance was attached first to the appropriate simulation of the structural response, whereas especially the

structural oscillations at the end of the wind gust were to be examined.

For that reason and because of the known weakness of the k–e model and related models based on the Reynolds-

averaged Navier–Stokes equations for unsteady turbulent flows around bodies, a simulation of the turbulent wind field

was not taken into account. This would require a large eddy simulation for the prediction of the turbulent flow (Breuer,

2002) which is the most reasonable and promising tool for an appropriate representation of the fluid flow for highly

unsteady flow phenomena encountered in dynamically coupled simulations. For the purpose of this paper, however, a

laminar flow was assumed with a Reynolds number of

Re ¼
LWmax

n
¼ 120 ð13Þ

formed with the leading edge of the roof ðL ¼ 3 mÞ and with the maximum gust velocity Wmax ¼ 40 m=s:
The basic flow was assumed to be parallel to the ground in the positive x direction with UN ¼ 10 m=s at a

height of 10 m above the ground. A wind gust was superimposed, which followed a Gaussian curve in both time
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Fig. 25. Time history of the displacement of vertex C for one single plate at Re ¼ 500 and UN ¼ 10 m=s:
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Fig. 26. Time history of the displacement of vertices C for two plates in a row behind each other at Re ¼ 500 and UN ¼ 10 m=s:
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and space:

W ðx; tÞ ¼ Wmax e�0:5ðt�tmÞ2e�0:005ðx�xmÞ2 ; ð14Þ

with xm ¼ �12 m and tm ¼ 3 s: The vector of the inflow velocity is depicted in Fig. 33. It is given by

Uinflowðx; tÞ ¼

UðzÞ

0

W ðx; tÞ

0
B@

1
CA: ð15Þ

Both the CFD and CSD simulations were based on a time step Dt ¼ 0:4 s: The particular surface meshes have already

been depicted in Fig. 2. The CSD mesh consists of 1409 nodes and 1311 finite elements, whereas the CFD mesh includes

1,024,000 finite volumes, of which 3072 contact the membrane surface. The flow domain had a length of Lx ¼ 144 m; a
width of Ly ¼ 33 m; and a height of Lz ¼ 20 m:
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Fig. 27. Time history of the displacement of vertices C for three plates in a row behind each other at Re ¼ 500 and UN ¼ 10 m=s:
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Fig. 28. Frequency spectrum of the displacement of vertices C for three plates in a row behind each other at Re ¼ 500 and UN ¼
10 m=s:
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5.2. Results

Fig. 34 shows a sample of four states of the flow field and the structural deformations at various time instants. The

grey scales in the fluid represent the velocity magnitude near the walls, while the shading of the membrane embodies its

deformation. A qualitative example for the output of the CSD code is given in Fig. 35 showing the fluid load and the

displacement of the structure.

The largest displacement occurred at the maximum of the gust at t ¼ 3 s; whereas the maximum distortion in the x

direction is to be found at point A, in the y direction at point B, and in the z direction at point C, depicted in Fig. 36

(left). The locations of these characteristic points (A, B, C) are displayed in Fig. 2. The largest vertical displacement of

about Dzmax ¼ 0:3 m (point C) is observed approximately in the middle of the tent.

Fig. 36 (right) shows the displacements in the z direction for the chosen evaluation points 1–5 also displayed in Fig. 2.

It becomes obvious that some of the points were moving upwards and others downwards during the impact of the gust,

which is more clearly visible in an animation of the coupled simulation available at http://www.lstm.uni–erlangen.de/

ber3/index99 ber3.html. Points 1 and 2 showed a noticeable overshoot and subsequent small oscillations, before they

reached the steady deformation state — which corresponds to the constant basic flow without superimposed wind gust

— again.

An evaluation of the forces that occurred inside the material in both the x and y directions—which nearly coincide

with the weft and warp directions of the fabric — yielded the maximum membrane forces sx ¼ 29:074 kN=m and

sy ¼ 73:709 kN=m at t ¼ 3:16 s: Both values were lower than the tensile strengths given in Table 7. Hence, the stability

of the structure is guaranteed concerning the above-mentioned wind load.

6. Conclusions and outlook

A coupled algorithm for the numerical simulation of fluid–structure interactions was presented and the

corresponding computer programs described. Both disciplines employ separate highly adapted codes being coupled

by a neutral coupling interface. A partitioned but fully implicit coupling algorithm applies both programs for predicting

fluid–structure interactions.

The present study involved two main test cases. First, the coupled code was applied to an academic fluid–structure

configuration consisting of the laminar flow around several flexible L-shaped plates. Three characteristic wake regimes
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Fig. 29. Time history of the displacement of vertices C for three plates in a row behind each other at Re ¼ 500 and UN ¼ 16 m=s:
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were investigated (at Reynolds numbers 50, 200, and 500), leading to different structural responses, including resonance

phenomena occurring when the vortex-shedding frequency is equal to an eigenfrequency of the plate. Furthermore, the

mutual influence of two and three plates in a row behind each other was studied.

The second test case dealt with a real-life lightweight structure. A membranous roof in front of an office building was

loaded by a combination of a basic flow and a temporary wind gust. Therefore, the contrasting features between the two

cases were not only academia versus practice but also plate structure vs membrane.

All simulations showed stable convergent behavior even without any under-relaxation in the outer FSI iterations.

The convergence criteria for the residual structural displacements referring to the maximum amplitude of oscillation

were between 2 � 10�4 and 10 � 10�4 for the L-shaped plates and 7 � 10�4 for the membranous roof. In order to fall

below these thresholds within each time step, one or two FSI iterations were required at the L-shaped plates. In the case

of the tent roof, 2–15 FSI iterations were necessary owing to the membranous structure, which is much more flexible

than the plate structure. Because of the great lack of experiments concerning flow-induced oscillations of simple

structures, a comparison between numerical and measurement data was unfortunately not possible.
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Fig. 30. Time history of the pressure at point V on the front side (thin, dashed curve) and on the back side (thick, solid curve) of the 1st

plate (top), 2nd plate (middle), and 3rd plate (bottom) at Re ¼ 500 and UN ¼ 16 m=s:
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The state-of-the-art of the presented software package is the following: in principle, the algorithm is able to take

into account time-dependent fluid–structure interactions, turbulent fluid flow, geometrically nonlinear displacements

and nonlinear material behavior concerning thin shell and membrane structures. However, time-dependent

turbulent flows around moving structures, where separation occurs, cannot yet be solved satisfactorily because of

Fig. 31. Vertical cutting plane through the pressure field at y ¼ 0:92L (sketched in Fig. 29) for Re ¼ 500 and UN ¼ 16 m=s:
t ¼ 19:5 s—before the plates became flexible (top left), t ¼ 20:405 s—largest distortions of the plates (top right), t ¼ 29 s (bottom). The

horizontal line at the bottom represents the ground at z ¼ 0:

Fig. 32. Geometry of the membranous roof.
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the known weaknesses of the available turbulence models of k–e type. Therefore, the CFD code FASTEST-3D is to be

extended to large eddy simulation in the near future in order to reach higher Reynolds numbers, which are of real

practical interest.

Fig. 35. Fluid loads at the CSD grid nodes for t ¼ 3:08 s (displacements multiplied by a factor of 6).

Tent roof

40 m/s

8

x
z

U

Fig. 33. Illustration of the inflow velocity Uinflowðx; zÞ at time t ¼ tm ¼ 3 s with velocity reference vector (to scale).

Fig. 34. Velocity distributions displayed near the horizontal wall (ground) and the vertical wall (office building behind the

membranous roof) and displacements displayed on the roof surface at four different time steps: t1 ¼ 2:0 s (top left), t2 ¼ 3:0 s (top

right), t3 ¼ 4:2 s (bottom left), t4 ¼ 6:4 s (bottom right).
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Concerning the structural simulation part, the system architecture should be supplemented by a simulation code

using three-dimensional finite element formulations instead of dimensionally reduced models such as shells and

membranes.
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